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Abstract

Recent findings indicate that deep generative models can

assign unreasonably high likelihoods to out-of-distribution

data points. Especially in applications such as autonomous

driving, medicine and robotics, these overconfident ratings

can have detrimental effects. In this work, we argue that two

points contribute to these findings: 1) modeling assump-

tions such as the choice of the likelihood, and 2) the evalua-

tion under local posterior distributions vs global prior dis-

tributions. We demonstrate experimentally how these mech-

anisms can bias the likelihood estimates of variational au-

toencoders.

1. Background

In recent years, we have witnessed an increasing in-

terest in density modeling using deep generative models

(DGMs). Their striking ability to generate e.g. natural look-

ing images has gained attention both in the artificial intel-

ligence community as well as the public media. A recent

paper [6] raised an important question: ”Do Deep Genera-

tive Models Know What They Don’t Know?”. The authors

show in extensive experiments that likelihood-based meth-

ods, such as variational autoencoders (VAEs) [4, 9] and

flow-based methods [2, 3], can assign higher likelihoods

to out-of-distribution (OOD) samples than to in-distribution

(ID) samples, which are drawn from the same distribution as

the training data. For example, a DGM trained on the Fash-

ionMNIST dataset will assign higher likelihoods to images

from the MNIST dataset compared to testing images from

the FashionMNIST dataset.

In this work we take a Bayesian approach to the prob-

lem and discuss why VAEs can assign high likelihoods to

OOD examples. We believe that this problem is caused by

a) modeling assumptions, and b) evaluation schemes. Due

to the lack of space, we refer the reader to [4, 9] for the

specifics of VAEs.

Modeling assumptions: A modeling assumption that con-

tributes to the performance of VAEs is the choice of the

likelihood. For images for example, we often define a

rather simplistic likelihood function, such as independent

and identically distributed (iid) pixels. Humans however

would rate the likelihood of an image in a certain dataset

based on its semantic content and spatial decomposition. In

fact, the true likelihood function of a data distribution is of-

ten unknown.

Local vs global evaluation: For a test point x̂, a VAE can

be evaluated by marginalizing over the latent variable z ei-

ther globally, using the prior, or locally, under a local, point-

estimated probability distribution that depends on x̂. To-

date, there exists no protocol evaluation scheme that is used

by all papers on VAEs.

2. Modeling assumptions

From a Bayesian view point, we would like to find

a model M which explains the observed data X =
{x1,x2, ...xN} in the best manner. We assume that

the data was generated from the following distribu-

tion p(X,Z,θx,θz|M
∗) = p(X|Z,θx)p(Z|θz)p(θx,θz|M

∗),
where Z are local latent variables, θx and θz are global pa-

rameters and M∗ is the true, data generating model. Here,

local variables are data point specific, such as the cluster

assignment in a Gaussian Mixture Model, while global pa-

rameters generalize over all data points, such as the means

and variances of the mixtures. Thus, we would like to find

the model that maximizes

M = argmax
M

∫
p(X,Z,θx,θz|M)∂θx∂θz.

Most VAE literature to-date discusses modeling assump-

tions related to the structure and choice of distribution over

the latent variables p(z|θz). A common assumption is that

a more flexible posterior distribution p(z|x,θz) will lead to

a better model performance, e.g. [8].

Few papers, e.g. [1, 7], discuss the structure of the like-

lihood term itself. We are interested in how this choice in-
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fluences the model performance not only on ID test data but

also OOD testing points. In most cases, the likelihood func-

tion is chosen to describe only local statistics in the data,

such as iid pixels, instead of the global structure of the train-

ing data distribution. Note that the VAE model itself does

capture global information about the data point, especially

in the latent variable, whereas the likelihood function only

focuses on local errors. While it appears unintuitive that a

likelihood function of a VAE, trained on Cifar-10, will as-

sign a higher value to an image from the The Street View

House Numbers (SVHN) dataset than to a test image of a

car from Cifar-10 [6], we need to keep in mind that it judges

pixels, not semantic content. An image from the SVHN

dataset usually consists of a background with a single color

and some darker regions that constitute a number. The im-

age of a car on the other hand consists of a varied back-

ground with parts of the street, grass and the sky as well as

the vehicle itself. This variance in color intensity moves the

Cifar-10 image further away from the average Cifar-10 im-

age than the SVHN test image and can therefore be judged

as less likely.

Even without including semantic knowledge, the model-

ing choice of the likelihood function can play a major role.

For instance, compared to MNIST, the intensity values in

FashionMNIST vary within and between images, e.g. due

to shading. If we assume an iid Bernoulli likelihood and bi-

narize the images, low intensity areas will disappear. Thus,

the Bernoulli likelihood might not be the correct choice for

FashionMNIST. In the experiments (Section 4), we demon-

strate how the choice of either an iid Bernoulli or an iid

Gaussian likelihood changes the behavior of a VAE with

respect to OOD testing data.

3. Local vs global evaluations

In the traditional variational inference (VI) setting, we

approximate the often intractable posterior distributions

over latent variables Z and parameters θx,θz with simpler,

approximate distributions q:

p(Z,θx,θz|X,M)≈ q(Z|θz)q(θx,θz|X,M).

After having inferred the parameters (Z,θx,θz), a model can

be evaluated on a testing point x̂ using

pPR
V I (x̂|M) =

∫
ẑ,θx,θz

p(x̂|ẑ,θx)p(ẑ|θz)p(θx,θz|M)

pPO
V I (x̂|X,M) =

∫
ẑ,θx,θz

p(x̂|ẑ,θx)p(ẑ|θz)p(θx,θz|X,M)

pAPO
V I (x̂|X,M) =

∫
ẑ,θx,θz

p(x̂|ẑ,θx)q(ẑ|θz)q(θx,θz).

Here pPR
V I is the prior predictive (PR), pPO

V I is the posterior

predictive (PO) and pAPO
V I is the approximate posterior pre-

dictive (APO) distribution. Note that after the inference,

the parameters (θx,θz) are fixed which implies that e.g.

p(x̂|ẑ,θx) has the same structural form for all testing points.

VAEs on the other hand assume the generative model

p(X,Z,θz,M) = p(X|φx(Z))p(Z|θz,M),

p(Z|X,M)≈ q(Z|φz(X),M),

where a parameterized neural network φz(X) determines the

parameters of the approximate posterior distribution q and

the neural network φx(Z) determines the structure of the

likelihood. θz is interpreted as prior parameters. Follow-

ing the structure above, the model can be evaluated using

pPR
VAE(x̂|X,M) =

∫
ẑ

p(x̂|φx(ẑ),M)p(ẑ|θz,M)

pPO
VAE(x̂|X,M) =

∫
ẑ

p(x̂|φx(ẑ),M)p(ẑ|φz(x̂),M)

pAPO
VAE (x̂|X,M) =

∫
ẑ

p(x̂|φx(ẑ),M)q(ẑ|φz(x̂),M),

where the influence of the training data X manifests itself

in form of the fixed parameters of the neural networks φx

and φz, which is why we condition even the prior predictive

distribution pPR
VAE on X. The original VAE papers [4] and

[9] use importance weighted versions of the posterior pre-

dictive pPO
VAE and the approximate posterior predictive pAPO

VAE

respectively to compute the marginal likelihood of the test-

ing data. Compared to the traditional VI setting, these two

evaluation schemes depend on the testing point x̂, which

influences both the structure of the (approximate) posterior

and the form of the data likelihood. Assume that a VAE was

trained on the FashionMNIST dataset and x̂ to be an image

of a pair of trousers. Then pPO
VAE and pAPO

VAE will only evalu-

ate this image under other images of trousers. It will not be

evaluated under images of e.g. shoes or sweaters. There-

fore, the image is evaluated locally and not under the global

training data distribution. If the test point x̂ on the other

hand was an image from the MNIST dataset, e.g. the digit 1,

it would also be evaluated locally, under images that resem-

ble the digit 1 but are close to the FashionMNIST dataset,

i.e. thin and long pieces of clothes. While this behavior is

not necessarily unwanted, it can skew the likelihood esti-

mates of ID and OOD data points. We demonstrate this on

a simple 3D Gaussian example and compare it to the tradi-

tional VI in the next section.

4. Experiments

We present experimental evidence that points towards

the problems that arise due to modeling assumptions and

evaluation schemes of VAEs.

Local vs global: a 3D Gaussian example We generate toy

data by sampling iid samples from a 3D Gaussian pX(x)
and train a VAE with a Gaussian likelihood function on

these samples. In Figure 1 a) we show samples from the
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c)a) b) Figure 1: 3D Gaussian: The color coding maps

the data points from the latent space (a)) to the

data space (b)). The red point is a test point. c)

visualizes the Standard Deviational Ellipse (SDE)

of the data distribution (blue) and the VAE ap-

proximate posterior predictive (red).

prior in the latent space that are then decoded into the out-

put space shown in Figure 1 b). The red point in a) is a

sample from an encoded testing point and the red point in

b) is a sample from its decoded likelihood. The likelihood

p(x̂|φx(ẑ),M) is a Gaussian that is centered close to the po-

sition of the testing point and has a low variance. When

comparing the difference between the Standard Deviational

Ellipse (SDE) of the inferred approximate posterior pre-

dictive pAPO
VAE (x̂|X,M) (red) compared to the data likelihood

pX(x̂) (blue) in Figure 1 c) we see that the testing point is

more likely under the local p(x̂|φx(ẑ),M) compared to the

global pX(x̂). Effectively, a test set is no longer evaluated

under a single Gaussian pX(x̂) but under an infinite mix-

ture of Gaussians [5] where each testing point is assigned its

own mixture component p(x̂|φx(ẑ),M). This becomes ap-

parent when we compare the log likelihoods (LL) of testing

points under a) the true distribution, b) the VAE PR, c) the

VAE APO and, for comparison, d) the VI APO as shown in

Figure 2. The VAE APO assigns local, overconfident likeli-

hoods compared to the VAE PR that samples globally from

the prior while evaluating under sample-dependent likeli-

hoods. The traditional VI approach in which we fitted a

Gaussian Mixture Model with ten mixtures to the data out-

performs both VAE approaches. This is caused by the fact

that it models a global likelihood function instead of point-

estimates of distributions.

Modeling assumptions To demonstrate the difference be-

tween modeling assumptions, we trained two VAEs, M1 and

M2, on the FashionMNIST dataset. The only difference be-

tween these two models is that they assume an iid Bernoulli

Figure 2: Test data log likelihoods under a) the true LL, b)

the prior predictive LL pPR
VAE(x̂|X,M), c) the approximate

posterior predictive LL pAPO
VAE (x̂|X,M) and d) the VI approx-

imate posterior predictive LL pAPO
V I (x̂|X,M).

and an iid Gaussian likelihood respectively. For M1 we bi-

narize the images and for M2 we scale the pixel values to

lie between zero and one. We evaluate the log likelihood

of these models under the prior and under the approximate

posterior. In the latter case, we evaluate with importance

weights as in [9]. We test both images on the FashionM-

NIST and the MNIST dataset and visualize the results in

Figure 3. It becomes apparent that the M2 model is better

at detecting the OOD data points. We also see that the VAE

APO produces more reasonable estimates than the VAE PR.

However, this might be caused by overconfidence as dis-

cussed in the previous section. Note that only the PR eval-

uation with a Bernoulli likelihood reproduces the results

reported in [6] while the APO evaluation with a Gaussian

likelihood reverses them.

5. Conclusion

We discussed two problems of VAEs that might con-

tribute to inappropriate likelihoods of OOD samples.

Firstly, we show how the modeling assumption on the like-

lihood function can impact the judgment of the model. We

show this by reversing the OOD phenomenon discussed in

[6] by simply changing the likelihood assumption. Sec-

ondly, we demonstrate that the local evaluation under the

approximated posterior leads to overconfidence in case of

the toy data. This phenomenon does not appear in the higher

dimensional image data, supposedly because of the curse of

dimensionality and sample complexity.

Figure 3: The log likelihood under the prior (left) and an

importance weighted approximate posterior (right) using

model M1 with an iid Bernoulli likelihood function (top)

and model M2 with an iid Gaussian likelihood function (bot-

tom).
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